Cell Cycle and Senescence p53/mdm2 Feedback Loop Sustains miR-221 Expression and Dictates the Response to Anticancer Treatments in Hepatocellular Carcinoma
نویسندگان
چکیده
The overexpression of microRNA-221 (miR-221) is reported in several human cancers including hepatocellular carcinoma, and its targeting by tailored treatments has been proposed. The evidence supporting the role ofmiR-221 in cancer is growing and has been mainly focused on the discovery of miR-221 targets as well as on its possible therapeutic exploitations. However, the mechanism sustaining miR-221 aberrant expression remains to be elucidated. In this study, MDM2 (E3 ubiquitin-protein ligase homolog), a known p53 (TP53) modulator, is identified as a direct target of miR-221, and a feed-forward loop is described that sustains miR-221 aberrant expression. Interestingly, miR-221 can activate the p53/mdm2 axis by inhibiting MDM2 and, in turn, p53 activation contributes to miR-221 enhanced expression. Moreover, by modulating the p53 axis, miR-221 impacts cell-cycle progression and apoptotic response to doxorubicin in hepatocellular carcinoma–derived cell lines. Finally, CpG island methylation status was assessed as a causative event associated with miR-221 upregulation in hepatocellular carcinoma cells and primary tumor specimens. In hepatocellular carcinoma–derived cell lines, pharmacologically inducedDNAhypomethylation potentiated a significant increase inmiR-221 expression. These data were confirmed in clinical specimens of hepatocellular carcinoma in which elevated miR-221 expression was associated with the simultaneous presence of wild-type p53 and DNA hypomethylation. Implications:These findings reveal a novel miR-221–sustained regulatory loop that determines a p53-contextspecific response to doxorubicin treatment in hepatocellular carcinoma. Mol Cancer Res; 12(2); 203–16.
منابع مشابه
p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma.
UNLABELLED The overexpression of microRNA-221 (miR-221) is reported in several human cancers including hepatocellular carcinoma, and its targeting by tailored treatments has been proposed. The evidence supporting the role of miR-221 in cancer is growing and has been mainly focused on the discovery of miR-221 targets as well as on its possible therapeutic exploitations. However, the mechanism su...
متن کاملmiR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress.
In cancers with wild-type (WT) p53 status, the function of p53 is inhibited through direct interaction with Mdm2 oncoprotein, a negative feedback loop to limit the function of p53. In response to cellular stress, p53 escapes the p53:Mdm2 negative feedback to accumulate rapidly to induce cell cycle arrest and apoptosis. We demonstrate herein that an microRNA miR-605 is a new component in the p53...
متن کاملMicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response
Cell fate regulation is an open problem whose comprehension impacts several areas of the biosciences. DNA damage induces cell cycle checkpoints that activate the p53 pathway to regulate cell fate mechanisms such as apoptosis or senescence. Experiments with different cell types show that the p53 pathway regulates cell fate through a switch behavior in its dynamics. For low DNA damage the pathway...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملmiR-26b enhances radiosensitivity of hepatocellular carcinoma cells by targeting EphA2
Objective(s): Although low-dose radiotherapy (RT) that involves low collateral damage is more suitable for hepatocellular carcinoma (HCC) than traditional high-dose RT, but to achieve satisfactory therapeutic effect with low-dose RT, it is necessary to sensitize HCC cells to irradiation. This study was aimed to determine whether radiosensitivity of HCC cells can be enhanced using miR-26b by tar...
متن کامل